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ABSTRACT 

A quantum device simulating  the  human decision making  process is introduced. It consists of quantum 
recurrent  nets  generating  stochastic processes which represent the motor  dynamics, and of classical  neural  nets 
describing the evolution of probabilities of these processes which represent the  mental  dynamics. The autonomy 
of the decision making process is achieved by a feedback from the  mental to motor  dynamics which changes the 
stochastic  matrix  based upon the probability  distribution. This feedback replaces  unavailable external  information 
by an  internal  know-ledgebase  stored  in  the  mental model in the form of probability  distributions. As a result, 
the coupled motor-mental  dynamics is described by a  nonlinear version of Markov  chains which can  decrease 
entropy  without  an  external  source of information.  Applications to common sense  based  decisions a s  well a s  to 
evolutionary  games  are  discussed. An example  exhibiting  self-organization is computed using quantum computer 
simulation.  Force on force and  mutual  aircraft engagement.s using the  quantum decisiou  makcr dynamics are 
considered. 

1 Introduction 

Quantum  computers  are  under development at  laboratories  around  the world. However, the  number of pow- 
erful  algorithms for use on future  quantum  computers has  been limited  because of the  restrictions imposed by 
the  quantum  unitary  operator.  The unitary  nondissipative  process,  central to  quantum  operations, does  not 
readily allow the  simulation of neural intelligence which can  be classically simulated  using,  among ot.her devices, 
dissipat.ive attractors.  One promising  approach around this impasse develops the concept of Quantum Recurrent 
Sets  (QRN) which has been  proposed by 2ak  and  william^.^ QRN takes advantage of the  quantum measure- 
ment  property which collapses the quantum  probability wave and is subsequently  reinitialized and  thereby resets 
the recurrent  process.  Thus,  the effective cornbined process is not limited to  unitary processes  only,  and  this 
ultimately altows thc efficient simulation of human endeavors. This paper develops the  Quantum Decision &laker 
theory whirh  extends  the QRN to include reflexive intelligence and  simulates a Quantum Decision Maker. 

The origin of the  Quantum Decision Maker begins  with  consideration of that most, mysterious  human  property, 
common  sense.  Common  sense has been an  obstacle for artificial intelligence even though  it was well understood 
that  human  behavior, and in particular  the human decision making process, is governed by feedback from the 
external world. Although  part of the problem was successfully simulated by control of systems, when thc  external 
world does not provide sufficient information,  the  human being toms for "advice" to his  experience, and t h t  is 
associated  with  common  sense. In this paper we represent common sense by a feedbuck from  the self image ( a 
reflezive concept, adapted from  psycl~ologys), and based upon that, we will propose  a  physical  model of common 
sense in connection with the decision making process. 
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2 The Decision Making Process in Terms of Nonlinear Probabilities 

0 5 T i 5 1 .  O < P i , < l  

where pil is the transition  matrix representing  a decision making policy. If P = const,  the process (1) approaches 
some final distribution nm regardless of the  initial  state T O .  In particular!  in the case of doubly-stochastic 
transition  matrix, i.e., when 

N 

j=l  i= l  

all the final choices become  equally  probable, 

i.e. the  system  approaches  its  thcrnlodynamic limit which is characterized by the  maximum  entropy. When the 
external world is changing,  such rigid behavior is unsatisfactory, and  the  matrix P has to be changed  accordingly, 
i.e., P = P ( t )  , Obviously this  change can be implemented only if the  external  information is available, and 
there are  certain  sets of rules  for  correct  responses. However, in real world  situations,  the  nvmber of rules grows 
exponentially  with  the  dimensionality of external factors,  and  therefore,  any  man-made  device  fails t o  implement 
such d e s  in full. 

The main  departure from this  strategy can be  observed in the  human  approach  to decision  making process. 
Indeed, faced  with an  uncertainty, a human being uses a "common  sense"  approach based upon his previous 
ezperience  and knowledge an the f o r m  of certain  invariants or patterns of behavior which are  suitable for the 
whole class of similar situations. Such  a reflexive ability follows from  the  fact  that a human possesses a self- 
image,  and  interucts  uith  it .  This concept which is widely exploited  in psychology has  been known  even to ancient 
philosophers, but so far its mathematical formalization  has never been linked to the decision making  model (1). 

First we will start wich an abstract  mathematical quest.ion: can  the  system (1) change its evolution. nnd 
consequently, its  limit  distribution,  without  any e x t e n d  "forces"? 

The formal  answer is definitely positive. Indeed, if the transition  matrix  depends  upon  the  current  probability 
distribution 

P = P(T) (4) 

then  the evolution (1) becomes  nonlinear,  and  it may have many different  scenarios depending upon the initial 
state K O .  In  the  particular case (2): it can "overcome" the second law of thermodynamics  decreasing  its final 
entropy by using only the  "internal" resources. The last conclusion illuminates bhe Schr6dinger  statement2  that 
"lzfe is to create  order an the  disordered  environment  against the second 1 1 1 7 ~ 1  of thermodynamzcs." Obviously this 
stahement cannot  be  taken  literally - as will bc shown hclow. Eq. (1) subject. to  the  condition (4) describes 
the  system which is not isolated,  and  therefore,  the result stated  above  does  not  violate  the second law of 
thermodynamirs. In order, to discuss  the  physical  meaning of the condition (4), let us turn  to Eq. (1) and 
introduce  the  uudcrlying  stochastic process. The  latter  can be simulated by R quantum device  represented by 
quantum  recurrent  nets (QRN),3 and we will start  with a brief description of that device. 

2 



A p y - 0 4 - 0 0  0 3 r 0 8 P  R o n  M e y e r s  

2.1 Quantum  Recurrent  Nets 

The simplest QRK is described by the following set of difference equatiorls  with constant  time delay 

where a3 is the  input  to  the network at time t ,  u,j is a  unitary  operator defined by the corresponding  Hamiltonian 
of the  quantum  systenl? and C T ~  is a measurement  operator (in the  computational basis) that has  the effect of 
projecting  the evolved state  into one of the eigenvectors of 01. The curly  brackets  are  intended to emphasize that 
n1 is to be  taken as n measurement  operation  with  the effect similar to those of a  sigmoid  function in classical 
neural  networks. Obviously, the  outputs a ,  ( t  + 7) are random  because of the probabilistic nature of quanturn 
measurements. As shown by Zak and  these 0ut.put.s form a Iblarkovian stochastic process with  the 
probabilities  evolving  according to  the chain (1) and 

n n 

j = 1  i= 1 

is the N x N  doubIy-stochastic  matrix which is uniquely defined by the  unitary  matrix U .  Each element of this 
matrix  represents  the  probability  that  the i t h  eigenvector as an  input  produces  jtheigenvector as an  output: 

In a special  case  when 
p i j  > 0; i: j = 1.2,  ... hT 

the Markov process is ergodic! ie.,  the  solution  to Eq.(l)  approaches an  attractor (3) which is unique and it dnas 
not  depend upon the  initial value  noat t = 0. Only this  case will be considered  in this  paper. Thus, Eq. (5) 
describes  the  evolution of the vector 

N 

representing a quantum  state in a Hilbert  space, and all the components (u j ,  ul,) are to be  actually  implemented. 
This evolution is irreversible, nonlinear  and  nondeterministic because it includes measumments operations. On 
the  other  hand,  thc vector 

n 

as well m the  stochastic  matrix pl, exist only in an abstract euclidean  space: they never appear explicitly i n  
physical space. The evolution (1) is also irreversible, but unlike (5), it is linear and  deterministic. 

So far n;e have simulated  the case P = Const. In order to control P, let. us assume  that  the result of the 
measurement? i.e., a unit  vector n,(t) = (00 .. .  010 ...  0 )  is combined w i t h  an nrbitrary complex  (interference) 
vector. If the reference state is 

a' = 

3 
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and u is a  measurement  operator in the computational basis: then 1 . 1 1 ,  ( t  + r ) )  , the  recurrent  state  re-entering the 
circuit,  must take one of the  forms: 

140)  

with  renormalization  factors: 

I t  should be emphasized that  the  states (11) are first calculated and  then  prepared as new quantum  inputs. 
The  transition  probability  matrix, pii for this process is given by examining how each of the recurrent  states, 
Ido) ... 16,v-1) evolve under the action of U :  

$I2 .. 

Thus, now the  structurc of the  transition pro1)ability matrix p i ]  can be controlled by the interference  vector (10): 
and P = P(t )  . 

Let us now implement the internal feed back (4).  For the  purpnsc, assunle that  the  components of 
intcrference  vector (10) are  defined by the  components K, of t,he probability vector by st:tt,ing: 

nL = f i ( X l , T 2 ,  ... X.\,) 

and rewriting Ecp. (12)-(16) accordingly. Then 

p,j = pi3 (x1 . . . T r y )  
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However, thc sirnp1icit.y of this  mathematical  operation is illusive. Indeed, as pointed  out  above,  the probabi1it.y 
vector T is not  simulated by tlle QRN explicitly: i t  has to be reconstructed by a statistical  analysis of the 
ensemble of  solutions to E K ~ .  (5). In order to ;&void that, one can simulate  the evolut.ion of the  probabilitv  vector, 
i.e.. Eq. ( 1 )  by a classical neural  network which can be presented, for instance, in the form 

r 1 

where S is the sigmoid function,  and w j k  = const are  the  synaptic rn-ights. Now Eqs. (5)  and (19) are coupled 
via the feedbacks ( 6 )  a n d  (17). 

0 From the  mathematical  point of view this  system  can be compared  with the Langevin equation which is 
coupled with  the  corresponding Fokker Planck  equation  such that  stochastic force is fully defined by the 
current  probability  distributions, while the diffusion coefficient is fully defined by t.he stochastic force.“ 

0 From the physical  viewpoint, Eqs. (5) and (19) represent two different physical systems  (quantum  and 
classical) which interact  via  the feed back‘s (4) and (6): the transition  probability  matrix P is defined by 
t,he unitary  matrix Lr of the QRN according to Eq. ( 6 ) ,  while the  input interference  vector to  the QRN is 
defined by the feed back (17). Using the  Feynman terminology,’ Eq. (5) simulates  probabilities, while Eq. ’ 

(19) manipulates  them. 

0 Finally, from the cognitive  viewpoint,  Eqs. (5) and (19) represent two different aspects of the  same  subject: 
the decision maker. Eq. (5) simulates his real-time  actions i.e., his motor  dynamics,  while  Eq. (19) 
describes  evolution of self-image in  terms of such  invariants as expectation,  variance,  entropy  (information). 
and  that can  be  associated  with the  mental  dynamics. 

Thus, as a result of interaction  with his own image and  without  any  ”external“  enforcement,  the decision 
maker can  depart  from the thermodynamical limit (3) of his performance  ”against  the second law.” Obviouslq-, 
from the physical  viewpoint,  the  enforcement in the form of the feedback (17) is external since the image (19) 
represents a different  physical system. In other words,  such  a  “free will” effort is not in a  disagreement  with  the 
second law of thermodynamics. 

Eqs.(5) and (19) illuminate unothe.r. remarkable property of humun activity: the ability to predict  the  future. 
Indeed, Eq. (19) depends  only  upon  the prescribed  unitary matrix U ,  but i t  does not  depend  upon  the evolution 
of the  vector a,. Therefore, Eq. (19). the predictzce eqaation can bc mn fus t c r  than real t ime;  as a result of that, 
f u t w e  probr~bality distributions as well as its inzariants can Ire predicted and cumpared with the objectizpe. Based 
upon  this  comparison, the feedback (17) can be changed if needed. 

Actually such interaction with self-irnnge simdates”common sense” which  replaces an unavailable  external 
so-~~rce  of injo,mation  and allows one to make decisiom based upon his previous  experience. 

Formally the knowledge base is represented by the  synaptic weight w l k  of Eq. (19), and i t s  consists of two 
parts.  The first part includes  personal  experience  and  habits  (risk  prone, risk aversion, etc.).  The second 
part  depends  upon  the  objective  formulated in tcrnls of probability  invariants  (certain  expectations  with minimal 
variance,  or  nlaximum  information. etc.).  The dependence  upon the  objective may irtclude real-time  adjustment 
of synaptic weights u : , ~  in the form of learning (adapted from theory of neural  networks). As soon as the  synaptic 
weights are  determined,  the common  sense  simulator will  follow the optirnnl strategy regardless of unexpected 
changes  in the  external world. 
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2.2 Exponential Increase in Information Capacity 

It should be noticed that the advantage of the quantum  implementation is not only in simulation of true 
randomness, b u t  also in. exponential increave of information capacity. Indeed,  combining the direct, product 
decomposability and entanglement,  one  can represent the  unitary  matrix in Eq. ( 5 )  'as follows: 

(20) 

Here the  number of independent  components is: 

q = 4 n m  (31) 

while the dimensionality is 
r\.'=2"=2i?;; 

In E.q. (22). A r  and q are  associated  with  the  Shannon  and  the algorit.hmic  complexity,  respectively;  therefore, 
the  exponential  Shannon  complesity is achieved by linear  resources. 

Further compression of Shannon  information  can  be  obtained by  applying  the E -measurement  architecture3 
when  each step of the  quantum evolution is repeated and measured C times, and  during a reset  operation  the 
results of all the  measurements are combined with  the previous state. As shown in,3  such an architecture provides 
the  double-exponential Shannon complexity: 

lv = 2% (23) 

The  advantage of the  quantum compression (22) or (23) can  be  appreciated in view of the fact that the 
efficiency of an alternative device - the pseudorandorn  number  generator - rapidly  decreases with  the growth of 
the  dimensionality of random  vectors. 

Finally, one should  notice that QRY provides the simplest  physical  simulation of the four constraints in Eq. 
(1). However, even if QRN is replaced by a random  number  generator, the quantum  formalism should be 
preserved  since i t  is the  best  mathematical tool  generator for implementation of these  constraints. 

3 Spontaneous self-organization 

We will start  the analysis of the motor-mental  dynamics, Le., of Eqs. (5) and (19) m + h  the effects of spon- 
taneous  self-organization with  the syst.em departs from the  state of the thermodynamics  limit and approaches a 
deterministic state  without any external forces. For that purpose  suppose that  the selected unitary  matrix in 
Eq. (5 )  is 

(21) 

Then the corresponding  transition probability matrix in Eq. (1):  according to Eq. ( 6 )  will bo doubly-stochastic: 

and  the stochrwtic  proccss (1) is already in its  thermodynamics  limit (3): i.e. r 1  = 7rz = $. Let us assume that 
the  objective of the decision-maker is to approach  the  deterministic state. 

6 
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without  help from outside.  In  order to (10 that. he sfwulci turn to his cxperiencu in t.he form of the feed back 
(17). If he chooses this feedback in thc form: 

Q = (a , , a2 ) ,  a ]  = -2K, ,  a2 = 1 (27) 

and because of the  property T F )  = (1 - *I“’), 7 1  can now be presented as: 

++I) = p 
1 pli + (1 p2i 

in which plland p22 are  substituted from Eq (28). It is easily verifiable that 

7r;” = 1,TF = 0, 

i.e., the  objective is achieved  due  to  the ”internal:’  feedback (27 ) .  

4 Attraction to Common Sense Based Strategies. 

Classical  artificial  intelligence as well as artificial  neural  networks are effective in a deterministic  and  repetitive 
world! but faced with the uncertainties and unpredictability, both of them fail. At the  same  time, many natural 
and  social  phenomena  exhibit some degree of regularity  only on a  higher level of abstraction, i.e.! in terms of some 
inmriants. For instance,  each  particular realization of a stochastic  process ca11 be  unpredictable in details,  but 
the whole ensemble of these  realizations i.e., ”the big picture” preserves the  probability  invariants  (expectation, 
moments,  information,  etc.), and therefore,  predictable  in  terms of behavior “in general.” 

In this  section 1 % ~  will map  the hetero-associative nlemory problem  performed by artificial neural nets  onto 
the patterns which represent  stochastic processes, namely: store a set of TTL stochastic  processes given by vectors 
of their  probability  distributions 

7 i ( i )  = T f ) .  .. ~ T?),  i = 1 ,  2, . , . 7 ? 1 .  (31) 

Do this in such t~ way that when  presented with any of the process li‘l) of the set. of M processes: 

the  coupled motor-mental dynamics (5), (19) converges to one of the  stodrastic processes (31). The performance 

represents  corresponderlce  between two classes of patt.erns, i.c., a hetcro-associative  memory 011 a height level 
of abstraction.  Indeed,  each process in (33) stores an infinite nunlber of different patterns of behaviors  which, 
however, are  characterized by the same sequence of invariants (31) and (32): repetitively thereby  representing  a 
decision making  strategy. 

7 
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Hence, if the strategy of the decision-maker is characterized by a pattern 7;(')frorn (32), starting froru t=O, the 
external  information  becomes  unavailable,  he  should  change  its  strategy from the  pattern  ir(J)to  the  corresponding 
pattern from (31) :  and that  can be  associated  with a decision based upon common  sense. It is implied that the 
attracting  strategies K' are sufficiently "safe", i.e.! they minimize the risk taken by the decision-maker in c;LTe of 
an uncertain  external world. 

The first step in the implement,ation of the  mapping (33) is to find the transition  probability matrix P such 

This implies that  the  sought  stochastic process is supposed to approach  its  limit  state  in  one  step, Le.. 

Therefore, P must have the following form: . 

\ . . .  _. ) i r l  
'* !V 

where the vector x = ( ~ i  . . .  T , V )  belongs to the family of the  vectors d i )  in Eq. (35). Indeed,  then  any  arbitrary 
probability  vector 

x = ( 2 1 , 2 2 , .  . . .'V) (37) 

is mapped onto  the  vector 7~ = ( T ,  ...x,\,) in one  step. 

Let us assume that  the vector R = (r ,  ... FN) is representable as a direct  product of n two-dimensional  vectors. 

( A I ,  x2 ' .  ' R.v )  I (38) 

n = log* N .  (39) 

Obviously this  assumption  imposes  constraints upon the components of the vector r ,  and as a result, this vector 
can  be defined only by 10i2 N (out of N )  independent parancters K,, i = 1: 2, ... n. Now Eq. (36) reduces to 

where 

The next step in the  implementation of the mapping (33) is to express the components of the  matrix (40) via 
the  components of the  unitary  operator C:ij (see Eq. (5)) and  the  interference  vector (10). For that purpose.  let 
us chuose C / i J  and a' a s  follows: 

8 
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Tt~en. according to Eqs. (11-16)- 

P - O S  

However, the  components of the interference vector: o k o k ( l )  and Ok(,)cannot  be chosen  independently  since  they 
should  explore the equality (43) as well as the  conditions: 

lmUk = 0, I m a k ( ; )  = 0: I , b k [ i )  = 0. (44) 

Simple  algebra  leads  to  the following constraints imposed upon  the interference  vector: 

a1 > - 1 , k  = 1,2 ,  ... n (4.5) 

Now the components “ k  in Eq. (43) can be expressed via the only one component of the incerference vector: 

It is easily verifiable that ??.slj) is the sigmoid function of a k  , 

and  that  property will be  exploited  later. 

The fiual step is to implement  the  actual association bctween the  pst.terns in the  mapping (33), i.e., to find 
the  appropriate  dependence between the components r k  of the matrix (40) and the componer1t.s of the  pattern 
7’. Since X k  are uniquely  defined by ab (see Eqs. (48)), we will start.  with  representing a k  as linear  combinations 

of the components of the  initial  patterns in the mapping (33) of each j t h  association: 

where W i k  are constant Weights to t x  found, m is the number of association in Eq. (33), hr and n are the 

dimensionalities of the  input  pattern r and  the  output  pattern 7r3, respectively. 
. i  
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Eq. (52)  presents the Exact solution, while Eq. (53) gives a minimum norm approximation for the cmc wtlen the 

number of association is large than  the dimensionality of the  input  patterns ;r . 
. ( 1 )  

Since a:) can  be expressed  via a probabilities x t )  of the  transition probability matrix (38) by nleans of Eq. 
(48): 

(one  can choose either of two values), the problem is solved in a closed analytical  form.  Indeed, given the 
associat.ions (33), one finds the corresponding u t ) b y  Eqs. (54): and  then weights wil depend  upon aU the values 

of the  input  patterns nk (via  the  matrix I I )  and  the  output  patterns n f )  (via  matrix A ) .  e ( A  

hs soon as  the 1veight.s wij are  found, Eq. (19) can  be  represented in the following form: 

/ 

where 
7 r ~ = 7 r 2 ( t - + 3 0 ) , 7 r ~ = 7 r ( t = 0 )  (56) 

and the sigmoid function'S'is defined by Eq. (49). Eq. (55) has a form of a perception for hetero-associative 
memory. Exploiting  this  formal analogy, one can conclude that any input  pattern r'' which is sufficiently close to 
a patter x(') from the left  of Eq. (33) will recall the  output  pattern which is close to  the  corresponding associative 

pattern 'TT from the right of Eq. (33). Moreover: due to the contracting  property of tLz sigmoid  function S in 
Eq. (55),  the  distance between the  output  patterns will bc smaller than between the input ones. In  particular, 
several different inputs  can  be  mapped  onto  the same output,  and  that can  be interpreted as a classification 
problem. 

. (j) 

However, from the cognitive  viewpoint, Eq. (53) is fundamentally different from the  perception  since it not 
only manipulates  with  the  patterns of probabilities, but i t  also  simulates  them via the QRN. Indeed, Eqs. (50) 
defines the interference  vector u' (see Eqs. (42)) which control the  unitary evolution of QRY (see Eqs. (5) and 
Eq. (41)) in such a way that  the generated  stochastic process 11~s exactly  the  same  probability  distribution as 
prescribed by the  probability  patterns rm manipulated by Eq. (55). 

5 Theoretical Discussion 

The model  introduced  above can be  generdized in several w t ~ y s .  Firsc we will consider tile  case when the 
decision-maker  controls two different, but correlated processes by making choices for combinations of decisions 
with  the  joint  probabilities n:j. As mentioned in the  introduction, the  quantum  implementation of stochastic 
processes, i.e.> QRX, i\llo\\rS one  to st.ay with  the same  evolutionary operator (41) with  the only  difference that now 
each step  in QRN evolution  should  be  run  and mcasured twice, and  therl the  results of these  nleasurements, being 
combined with  tho interference  vector (10) and normalized, are  sent back as a new input. The sequences of the 
first and  the second  measurements  correspond  to  the  joint  strnt.egy for making  decisions  controlling two correlated 
processes. The physical origin of this correlation is quantum interference between the results of measurements 
after  they  are combined for a new input and subjected t.o the next step of urlitary  evolution. 

Following the SLLIIW nlechodology as  those for a simple strategy, let us present a brief sketch of the double- 
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st2rnt9egy model and start with the assumption sirnilar to Eq. (38): 

Then one can deal  with  each 2x2 evolutionary  operator in Eq. (41) separately. Any of these  operators gives rise 
to  the following transition  probability  matrix: 

where 

Analysis of Eqs. (59) shows that only the four (out of t d v e  ) equalities,  namely 

lnwt  be enforced since the rest of them will follow automatically. Hence, one has  to choose the four components 
of the  interference  vector 

a' ( ~ 1 , U i )  = ~ l ( 1 )  -t ib,(,];az = nz(1) + ibz(z) (62 )  

to enforce the four  equalities in (61). 

In principle, the problem is solvable, however, unlike the previous case (see Eqs. (45)-(47)) a closed from 
analytical  solution is not  available any more. A numerical solution  can  be  based  upon  methods of grndient- 
descent. A s  a result,  one arrives at the generalized model of motor-mental  dynamics: 

a,  ( t  f T )  = 6 2  { u i j  ( t )  aj (t)} 

Now the vector a, simulatcs t.wo correlated  stochastic processes (corresponding to the first and the second 
measurements,  respectively) whose joint probability riJ is described by Eq. (64). Eqs.(BS)and (64) are coupled in 
the  same way in which Eqs. (3) and (19) are.  Further  generalization to  the case of l(f? > 2) correlated  strategies 
will require to replace 2 r 2  components of unitary  operators hy lzP components in the decomposition (41). As a 
result of that,  the decomposition (57) should be changed ac:c;ordingly. 
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The second line of generalization of the model considered in the previous section is associated  with  an  objective 
function. Indeed, so far we did  not discuss how the limit strategy 7 ~ y  (see Eq. (55)) has  been  prescribed. 
In principle, such a  prescription  can  be based upon the  optimization of some  objective  function,  for  example: 
maximize  entropy subject  to a given expectation  and variance, or minimize the expected  cost  function: 

N 

E = CCj7r? 
j = l  

subject to the  constraints: 
N 

0 < < 1,c .y  = 1 (66) 
j=l 

where c1 are given weights representing  the  ''external world." This  minimization  can  be  performed by linear 
programming, and as a result, the limit  probability will be defined by the weights: .';" = f l  ( C l ,  c2, ... GB) * (67) 

However, in general,  the weights ci can represent the  probability  distribution of another  stochastic process (on 
a much slower t inx  scale)  which belongs to a family of strategies converging to o global strategy  in a way similar 
to  the mapping (53). By continuing  this process,  one  arrives at a hierarchy of stochastic  attractors leading from 
local to global  strategies  on  the higher an higher levels of abstraction. Such a hierarchy can  be  implemented by 
a set of master-slave  equation of the  type of (5) and (19). 

In many  practical cases, the object.ive  function  depends  upon the  outcome  probabilities T? and  then Eqs. 
( 6 5 ) ,  (66) are coupled  with Eqs. (5) and (19). This happens for instance: when the  external world is  represented 
by another decision-maker, and  that  situation can be interpreted ELS an evolutionary  game. 

5.1 Two Decision-Makers (Players) 

Let us consider two decision-makers  (players)  and  suppose that  the first  player's  objective is to maximize the 
expected payoff after p nilmber of moves: 

where r;j are  joint  probabilities that  the players will use the  strategies i and j respectively. Then  the  objective 
of the second  player is to minimize  tho rnavi~num of E .  If the objective (68): (69) is available to both players 
each of them can find tho  best  strategy (for  instance  by  applying  the methods of dynamical  programming)  and 
implement it by simulations of Eqs. (63) and (64). However, i t  may happen th;lt the players do not know exactly 
the object.ive. For instance, in the beginning  they may ignore the correltltion between  their strategies assuming 
that 

I I t  irij = K i n j  (70) 

where i~! and rf' are  the  independent probabilities that each player will L L S ~  a certain  strategy.  Then each ylaycr 
will have its own image of the  objective: 
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k=O I J = ~  

and, based  upon that: he will execute  his  strategy by running the corresponding version of Eqs. (63) and (64) 
After $ numbers of moves, the feedback from the externai world becomes available,  and  the players can  evaluate 
their  perfornnnce by comparing  the differences: 

A' = E' - E ,  A" = E'' - E. (73) 

Based upon  these differences, each of them can update  the coefficients a:] and  in  their  objectives (71) arid 
(72) respectively, and introduce  correlations between T!  and nf' (such a re-evaluation of the objective  can  exploit 
the methodology of Bayes' procedures).  Consequently,  the player who has better  images of the self and of the 
adversary  has a better  chance to win. 

6 Numerical Quantum 'Computing Simulation of Nonlinear 
Probability Governing Spontaneous Self-Organization 

In this  section we simulate a quantum  computer algorithm of spontaneous  self-organization.  Spontaneous 
self-organization is modeled by the evolution of nonlinear probability  functions of Eq. (29). To perform  this 
simulation  both  the  quantum  dynamics simulation  algorithm  and  the  nonlinear  probability distribution  algorithm 
are needed. The  quantum based algorithm would, of course?  normally be run on a quantum  computer.  Until 
such  quantum  computers  are developed the  algorithms  are sirnulated using a classical computer. 

6.1 Quantum Dynamics Algorithm 

This  section  describes  the  stochastic imp1ement;rtion of the  quantum dynamics part of the self-organization 
algorithm.  The  steps in the  computation  me as follows: 

1. Since Quantum  Recurrent  Nets (QRN) 11eed to relate to quantum  measurements i t  is useful to define  a 
nlat.rix of measurements 

0 ... 0 

t;= (.;. 1 :  11: ; . ) !  

with  its  elernents bk". For a 4 by 4 sample  process that we compute below we have 

(75) 

2. Acid the  matrix of mcasurelncnts  elements  to  the interference matrix elerrlents a:') to obtain  the  recurrent 
state  matrix  elements a;), 

a;') = ($1 + ('76) 
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3. Compute  the unnorrnalized  recurrent state vector 6:.1) by multiplying the  unitary  matrix ‘u with  elements 
ujT times  the  recurrent  state  matrix  to  obtain 

N -  1 

r=O 

4. Comput,e the renormalization  vector elements 

5. Compute  the  transition  probability  matrix elements by taking  the complex  conjugate  and  renormalizing, 

6.  Select a row from the  matrix of measurements  and  create a result vector t’ from the  product of measurement 
vector 6’ and the  transition probabi1it.y P 

3 

For example, 6’ = [lOOO] is the first row vector of the measurement matrix for a 4 by 4 matrix,  and 6’ = [OlOO] 
is the second row. The term E: would be  the j t h  element in the respective  vectors. 

7. Build  bins  where the first bin is from zero to the value of the first element z’1. and the second bin is from 
the value of vlto 722, and so forth  to  the value one. The hin  intervals are  proportional to thc transition 
probabilities. 

8. Use a random  number  generator which generates  random  numbers in the i n t e n d  0 to 1, and assign the 
first random  number to  the bin in which it, f a l l s .  

9. Depending in which indcxcd bin the random  number falls assign lhe corresponding  measurement  vector 
ind&x for the next  measurement cycle. 

10. Keep track of the bin number in which the measurements fall and plot the frequency of occurrence of etch 
bin number.  The normalized  frequency of occurrence is the  probability. 

EXAMPLE 1. Quantum Probability Sinrulation 

As an example we compute  the transition  probabilities from u. given unitary  matrix, and also cornpute  the 
probability  distribution  after  taking 1000 steps of the Markov process. The transition  probability does not change 
with time in this  example. However, in a second example below we allow i t  to change with time by successive 
use a d  reinitialization of this algorithm: where the reinitialization  depends on probnbility  outcorues. The 4 by 4 
unitary  matrix 

-.426364 - .40965i .152799 + .4495i32 ,268873 - .52106.i .262.525 - .110547i 
.187355 i- .2riG12i 377974 - ,0919836.i .624798 - .282139i -.5189 + .0924264i ‘u=  ( .478001 - .334466i .230266 - .310334i .0028141- .0982155’ .164187 - ,688263.L 

-.4156% + .19O’i’76i -.263578 - .635931i ,419877 - .016(3754i .363206 - .092O’i33i 

where thc? interference  vector is 
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-.007415ag + .48916i 
-.12314 - ,6676012 
344441 - .149759i 
.386876 - .095236i 

gives the  transkion  probability 

.579626 .00222459 ,216761 .201389 

.338022 .0781686 .156648 ,436962 

.785018 ,159218 .0330651 .0207996 

.471082 .225005 .28342 .0204926 

P =  ( 
Tlie initial fixed point  probability  distribution over states is 

x' = [ 5'79626 .00222459 .216761  .201389 ] . 

The final fixed point  probability  distribution over stat.- is found to be 

x'ouu = [ .5810 ,0730  ,1990  .1470 ] (85) 

after 1000 transitions. The computations were implemented on a PC computer?  and  the  computation  run time 
was short. 

6.2 Self-Organization Quantum Dynamics Algorithm 

The  theory for the self-organization quantum dynamics is discussed aboxs, and  its  implementation as an 
algorithm 011 a classical digital  computer used the following steps: 

1. Start with the  transition  probability  matrix 

p =  (:  f f  f >  
2. Choose initial  conditions 

1 
. r .  - . ' *  - - 

2' (87) 

3. Cornpl~te r j ( k  f ljhy making n set of m measurements using the current  transition  probability  matrix using 
the ~ T O C ~ S S  in the Quantum Dynamics Algorithm subsection. The number m. should be  large enough that 
the  distribution of butcomw fairly represents the transition  probability  distribution in order to have good 
accuracy. 

4. Compute a p i j ( k  + 1 )  using ni (k  + 1) in 

This rmults in a nonlinear  probability  distribution process. 

/ 5  



Apr-04-00  O 3 : O S P  R o n  M e Y e r S  P .  15 

5. Repent steps #3. and #4. for each  time step advance. 

EXAMPLE 2 .  Self-Organization ,Yonlanear Probability Distribution  Evolution 

The values of the probability  distribution €or the  above  initial  conditions for SLK time  steps were computed as 

Thus, as the  theory  predicts,  the  computational  simulation shows that x1 is attracted  to 1 and 7r2 attracted 
to 0 with  increase in time. 

7 Conclusions 

The  Quantum  Recurrent  Net (QRN) theory  implementing reflexive intelligence has been  developed and 
computational  dynamics  simulations  demonstrating its practical  implementation  have  been  made. The extension 
to more  complicated  problems is underway. Already the problem has been formulated for the  prey-predator  and 
mutual  aircraft  pursuit  problems and numerical  algorithms  are  under  development using the reflexive intelligence 
concepts  and  computational  dynamics  introduced  above. QRS can be  further  developed for the modeling of more 
complicated force-on-force engagements  and  general  social  interactions  resulting in far more redistic and useful 
predicitions. 

Thus we have intmduced a new dgnamical paradigm in the f o r m  of coupled motor and mental dDnumzcs which 
is represented by  a quantum generator of stochustic processes controlled b y  nonlinear blurkou chains. Based upon 
this paradigm: a quantum decision-mnker has been proposed New dynamical  phenomena!  namely spontaneous 
self-organization, attraction  to common sellst: strategies,  and a new approach to simulation of evolutionary  games 
have been discussed. True  quantum mechanical  inlplementation would provide  enormous  storage,  random  number 
generation,  and  computational  advantages. 
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